搜索结果: 1-15 共查到“生物学 3D”相关记录76条 . 查询时间(0.343 秒)
2024年8月28日,中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心,以下简称“基因组所”)孔思远课题组、潘玮华课题组在《宏(iMeta)》上在线发表题为“Efficient and easy-to-use capturing three-dimensional metagenome interactions with GutHi-C”的研究论文,该研究开发了一种...
大自然的3D打印机什么样(图)
大自然 3D打印机 分子生物学
2024/8/6
什么是大自然的3D打印机?奥地利维也纳大学马克斯·佩鲁茨实验室分子生物学家们领导的一项跨学科研究,可以告诉人们答案:一种海洋环节动物杜氏阔沙蚕身上的特殊细胞——毛壳细胞,控制着刚毛的形成,其操作模式竟与3D打印技术惊人地相似。研究结果13日发表在《自然·通讯》上。
中国科学院深圳先进技术研究院变纤维直径3D打印技术为器官仿生构建提供新策略(图)
纤维 3D打印 器官 仿生
2024/6/23
2024年4月4日,中国科学院深圳先进技术研究院医药所退行性中心阮长顺团队在Nature Communications在线发表题为“Gradient matters via filament diameter-adjustable 3D printing”的研究性工作。该研究通过定制3D打印运动轨迹上的打印速度和打印高度,实现挤出3D打印纤维直径的精准控制,革新均匀纤维堆积的传统模式,实现梯度多孔...
肌腱-骨界面的独特结构可有效缓解应力集中,在人体运动功能中发挥着重要作用。当发生损伤时,由于生理结构复杂和再生能力差,临床手术治疗往往会导致界面处瘢痕组织形成,提高再次损伤几率。传统的生物材料倾向于增强与肌腱-骨直接相关的生物功能,如成骨分化或肌腱分化,但损伤部位三维微环境,尤其是体内免疫细胞引发的炎症反应,同样至关重要。根据研究经验,减少 M1巨噬细胞在肌腱-骨界面的聚集并诱导 M2巨噬细胞极化...
胎儿脑组织育出3D“迷你”类器官(图)
脑组织 3D 神经元细胞
2024/1/11
整个人类胎儿大脑类器官的图像。干细胞用SOX2(灰色)标记,神经元细胞(TUJ1) 根据深度从粉红色到黄色进行颜色编码。
中国科学院动物研究所白明研究团队合作创制保存高质量DNA的昆虫野外监测装置(3D打印版)
白明 昆虫 监测装置 生态系统
2024/2/27
生物多样性丧失是全球三大环境危机之一。昆虫,作为一个极其庞大且多样化的生物群体,几乎占据各种类型栖息地,在生态系统中扮演着至关重要的角色。“SITE-100”国际大科学计划,是由中国科学院动物研究所白明研究员与英国自然博物馆Alfried Vogler 教授联合发起的全球昆虫多样性监测计划。通过全球构建100个以上标准样地和标准化分析流程,从物种多样性、遗传多样性和形态多样性三个维度揭示全球昆虫多...
中国科学院福建物构所3D打印仿生结构研究获进展(图)
福建物构所 3D打印 仿生结构
2023/5/3
具有复合特征的仿生结构因独特的机械性能,为各种工程应用开发设计优异性能的结构提供了设计思路。然而,在仿生制造和设计这些复杂精细结构时,在模具成型和复杂结构验证等方面常常受到加工条件限制。3D打印可快速制造各种复杂结构,为仿生结构的设计、制造和验证提供了新方法。
首个人类气味受体3D结构有望探明嗅觉的秘密
气味受体 3D结构 气味分子 自然
2023/7/4
日常生活中充满了各种气味,令人愉悦的花香、让人作呕的腐烂气味儿... ...人们利用鼻子中的气味受体蛋白接收这些信息。
中国科学院光固化3D打印微生物活性功能体研究获进展(图)
光固化3D打印 微生物活性功能
2022/11/28
2022年来,水体富营养化对水生态平衡和人类健康造成危害。固定化微生物技术是利用物理或化学方法将游离微生物细胞限制在一定空间区域内,既能免受流水冲刷流失、可重复循环利用,又能保持生物活性,有效去除水体中的污染物,但因现有材料及制作方法的限制而未得到广泛应用。
中国科学院水生生物研究所解析3D基因组重塑对裸鲤摄食偏好适应性的调控机制(图)
3D基因 裸鲤摄食偏好 演化
2022/10/22
摄食偏好的分化是导致新物种出现的重要机制之一。然而,人们对摄食偏好适应的潜在遗传机制知之甚少。生活在青藏高原的斜口裸鲤(Gymnocypris eckloni scoliostomus)和花斑裸鲤(G. eckloni eckloni)是在较短的时间内(~57000年)完成分化的2个近源物种,并演化出不同的摄食偏好,在摄食器官形态和功能上表现出显著的适应性差异。与花斑裸鲤的杂食性不同,斜口裸鲤长期...
脊髓损伤(SCI)是一种严重的中枢神经系统创伤性疾病,全球每年有多达50万人因病致残。损伤后大脑和周围器官之间的神经连接中断,导致损伤节段以下的感觉和运动功能丧失,严重影响患者的生活质量,并且对家庭和社会带来巨大的经济负担。目前,SCI的临床治疗方式主要包括手术治疗、药物治疗和康复治疗等,尽管治疗技术有了长足的进步,但恢复患者的感觉和运动功能仍然是一个巨大挑战。
金属含羞草:金属玻璃仿生3D屈曲结构(图)
金属玻璃 仿生 3D屈曲结构 金属含羞草
2023/1/6