搜索结果: 1-6 共查到“信息与通信工程 KPCA”相关记录6条 . 查询时间(0.046 秒)
提出了一种基于KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Projection for Sparse Reconstruction,GPSR)求得测试样本的...
采用KPCA和BP神经网络的单目车载红外图像深度估计
深度估计 红外图像 KPCA BP神经网络
2016/9/1
提出一种基于监督学习得到深度估计模型的单目车载红外图像深度估计方法。首先用核主成分分析法(KPCA)筛选红外图像特征。将最初提取的红外图像特征用核函数非线性映射到一个线性可分的高维特征空间,再完成主成分分析(PCA),得到降维后的红外图像特征。然后以BP神经网络为模型基础,对红外图像特征和深度值进行训练,训练后的深度估计模型可对单目车载红外图像的深度分布进行估计。实验结果证明,利用该模型估计的单目...
两步降维的核主成份分析(kernel principal component analysis,KPCA)+线性判别式分析(linear discriminant analysis,LDA)法中,第一步KPCA变换阵的选取影响数据的分类结果。对线性不可分问题首先研究了正定核KPCA+LDA中KPCA变换阵的选取对分类结果的影响;其次,将正定核推广到不定核,研究了不定核KPCA+LDA中KPCA变换...
对信号的特征选择与分类问题进行研究,提出了一种基于核主分量分析(kernel principle component analysis, KPCA)和线性判别(linear discriminant analysis, LDA)分类器的信号调制识别算法。针对通信信号的特点,首先利用KPCA的方法对特征参数进行主分量组合,以消除信号特征间的相关性和压缩特征向量的维数,然后利用LDA分类器进行信号调制...
利用小波变换提高基于KPCA方法的人脸识别性能
人脸识别 小波变换 核主成分分析
2009/11/19
基于核主成分分析(KPCA)的人脸识别算法能够提取非线性图像特征,在小样本训练条件下有较好性能. 然而并非所有非线性特征对识别都有利,过多的不相关特征可能会降低识别性能. 针对图像信息冗余的特点,预先对图像进行小波变换,通过消除对识别无关的细节信息,不仅提高了KPCA方法的识别精度,而且降低了该算法对计算机硬件的要求. 同时,为了抑制KPCA对光照等变化的较高敏感性,还提出一种对图像灰度进行衰减的...