搜索结果: 1-15 共查到“计算机科学技术 KNN”相关记录23条 . 查询时间(0.015 秒)
锂离子电池的健康状态(State of health,SOH)是决定电池使用寿命的关键因素.由于锂电池生产工艺、工作环境和使用习惯等的差异性导致其衰退特性具有较大差异,因此锂电池SOH难以精确估算.本文采用数据驱动的方式通过对采集的电压数据进行特征提取,使用贝叶斯正则化神经网络对锂电池SOH进行预测,同时引入KNN-马尔科夫修正策略对预测结果进行修正。
一种基于兴趣点分布的匿名框KNN查询方法
位置隐私 基于位置的服务 匿名框 K近邻查询
2016/12/26
针对利用匿名框实现的兴趣点K近邻KNN)查询带来的通信开销大、时延长等问题,提出了基于单一兴趣点Voronoi图划分和四叉树层次化组织的KNN查询方法.该方法根据兴趣点层次信息有针对性的构造查询匿名框用来获取详细查询信息,在保护位置隐私的同时,降低了查询通信开销,同时注入虚假查询保护了用户的真实查询内容隐私.最后分别采用模拟地理数据和真实地理数据进行理论分析和有效性验证.
MapReduce框架下的优化高维索引与KNN查询
云计算 MapReduce KNN查询 高维索引
2016/12/27
针对大规模高维数据近似查询效率低下的问题,利用MapReduce编程模型在大规模集群上的数据与任务的并行计算与处理优势,提出MapReduce框架下大规模高维数据索引及KNN查询方法(iPBM),重点突破MapReduce数据块(block)的优化划分与各数据块对计算的共同贡献两大难题,利用两阶段数据划分策略并依据相关性与并行性原则将数据均匀分配到各数据块中,设计分布式的双层空间索引结构与并行KN...
PCA与KNN在胎心率与宫缩描记图分类中的研究
主成分分析 K近邻分类 胎心率与宫缩描记图
2010/3/15
提出了基于主成分分析(Principal Component Analysis,PCA)的K近邻(K Nearest Neighbor,KNN)分类原理,并将其应用于胎心率与宫缩描记图分类。主要思想是:对训练样本和测试样本进行降维,并对降维后的测试样本使用KNN分类技术分类。选择2 120组胎心率与宫缩描记图数据,使用该方法进行分类测试。实验结果表明,使用该类模型,分类结果稳定,分类准确率高,并且...
基于属性值信息熵的KNN改进算法
分类 KNN算法 属性值 信息熵
2010/1/28
为了克服传统KNN算法,距离加权-KNN算法在距离定义及投票方式上的不足,提出了一种基于属性值对类别重要性的改进算法Entropy-KNN。首先定义两个样本间的距离为相同属性值的平均信息熵,此距离可通过重要属性值有效度量样本之间的相似程度,其次算法Entropy-KNN根据上述定义的距离选取与待测试样本距离最小的K个近邻,最后根据各类近邻样本点的平均距离及个数判断待测试样本的类别。在蘑菇数据集上的...
提出了一种小波分析与改进KNN相结合的红虫图像识别方法。该方法采用多辨识小波分解提取图像的小波能量特征,同时结合生物图像颜色特征构造特征向量,然后选择加权改进KNN分类器进行识别,分类器根据特征与分类相关度确定权重,修改距离函数,有效提高了分类精度。通过对红虫、剑水蚤、猛水蚤样本进行分类试验证明,平均识别准确率达到95.41%,验证了该方法的有效性。
双重结构粒子群和KNN在生理信号情感识别中的应用
生理信号 粒子群优化 K近邻
2009/9/18
将双重结构的粒子群(DSPSO)应用到生理情感特征的选择中,提高了特征选择效果和情感识别的正确率。提出了增量K多类KNN分类器解决KNN在分多类时出现的不可分现象并改善了多类识别的效果。通过4种生理信号(EMG、SC、ECG、RSP)来识别4种情感(joy、anger、sadness、pleasure),同传统的SFFS算法以及BPSO算法相比,识别率有了较大的提高。仿真结果表明,DSPSO能较好...
改进KNN-SVM的性别识别
支持向量机 K近邻距离分类器 最优阈值
2009/7/22
针对支持向量机(SVM)在超平面附近进行性别识别的不准确性,引入进行加权的K近邻(KNN)算法。提出了结合加权KNN和SVM的改进KNN-SVM算法,该算法用少量已知性别样本自动确定加权KNN与SVM的最优分类阈值,并计算待识别样本和支持向量机所确定的超平面的距离,通过距离与阈值的比较进行性别识别。基于FERET人脸库进行性别实验,实验结果表明,该算法比SVM算法和不进行加权处理的KNN-SVM算...
基于OET-KNN算法的蛋白质二级结构类型预测
蛋白质 二级结构型预测 K-近邻算法
2009/7/21
蛋白质二级结构类型预测是当今生物信息学研究的热点之一。利用氨基酸数字编码模型将氨基酸序列转换成数字信号,根据LZ复杂度的算法计算了氨基酸的伪氨基酸成分,再对伪氨基酸成分用OET-KNN算法进行分类预测。Jackknife测试结果表明该算法能使得预测成功率有较大的提高。
基于P2P结构的kNN组查询算法
移动对象kNN查询 区间计时算法 临界点信息处理算法
2009/7/21
着重讨论了基于P2P结构的移动对象kNN组查询算法。组查询算法采用建立计时区间的方法合并计时器,并通过改变临界物体的应答模式来优化临界物体间的通信协议。为降低移动对象资源的紧张程度,设计了区间计时算法和临界点信息处理算法以降低通信频率,减少响应次数,增强组查询的实时性。在模拟实验中,组查询算法有效降低了移动物体的CPU资源紧张程度和无线通信代价。
基于聚类算法的KNN文本分类算法研究
K近邻 隶属度 文本分类
2009/7/17
KNN算法是一种在人工智能领域如专家系统、数据挖掘、模式识别等方面广泛应用的算法。该算法简单有效,易于实现。但是KNN算法在决定测试样本的类别时,是把所求的该测试样本的K个最近邻是等同看待的,即不考虑这K个最近邻能表达所属类别的程度。由于训练样本的分布是不均匀的,每个样本对分类的贡献也就不一样,因此有必要有区别的对待训练样本集合中的每个样本。利用聚类算法,求出训练样本集合中每个训练样本的隶属度,利...
简化的粒子群优化快速KNN分类算法
K近邻分类器 粒子群优化算法 相似度
2009/7/15
提出了一种有效的k近邻分类文本分类算法,即SPSOKNN算法,该算法利用粒子群优化方法的随机搜索能力在训练集中随机搜索.在搜索k近邻的过程中,粒子群跳跃式移动,掠过大量不可能成为k近邻的文档向量,并且去除了粒子群进化过程中粒子速度的影响,从而可以更快速地找到测试样本的k个近邻.通过验证算法的有效性表明,在查找k近邻相同时,SPOSKNN算法的分类精度高于基本KNN算法。
基于KNN的不良文本过滤方法
KNN 算法 不良文本过滤 χ2统计量
2009/12/28
不良文本过滤是当前的一个研究热点。通过对χ2 统计量的具体分析,证明χ2 统计量在2类文本特征项提取过程中特有的优势。提出正面文本阈值δ,并从理论上推断出该值的大小。在此基础上改进KNN算法,消除了KNN算法中N的不确定性,彻底实现了无参性,大幅减少了分类所用的时间。实验证明,该算法符合Web实时在线分类的要求。
用于WEB文档分类的并行KNN算法
文档分类 K最近邻 并行策略
2009/7/6
针对WEB文档分类中KNN算法计算复杂度高的缺点,不同于以往从减少训练样本集大小和采用快速算法角度来降低KNN算法的计算复杂度,从并行的角度出发,提出一种在Hyper-cube SIMD模型上的并行算法,其关键部分的时间计算复杂度从O(n2)降为O(log(n)),该算法与传统的串行算法相比,能显著地提高分类速度。